Skip Navigation
Search
McLennan

Scott M. McLennan

Distinguished Toll Professor
Office: ESS 252
Phone: 631-632-8194
E-mail:  scott.mclennan @ stonybrook.edu


B.Sc.(Hon), University of Western Ontario, 1975
M.Sc., University of Western Ontario, 1977
Ph.D., Australian National University, 1981
Research Fellow, Australian National University, 1981-1986
Faculty member at Stony Brook since 1987

Visiting Fellow, Australian National University, Canberra, 1989, 1994; Visiting Scientist, Max-Planck-Institut für Chemie, Mainz, 1994; Visiting Professor, California Institute of Technology, Pasadena, 2008; Visiting Professor, Wrocław University, 10/2008; Visiting Senior Research Scientist, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 2012-2013; Academic Visitor, The University of Oxford, 2019-2020; Visiting Fellow, All Souls College, Oxford, 2019-2020; Visiting Professor, ETH Zürich, 2024.

The 1985 book “The Continental Crust: Its Composition and Evolution” by S. R. Taylor and S. M. McLennan, originally published by Blackwell Scientific, is now available for downloading for personal use at the Stony Brook University Academic Commons repository (pdf; 4.8MB):   https://commons.library.stonybrook.edu/geo-articles/12


Preserved within sedimentary rocks is a record of planetary history. At any time eroding sediments are providing a sampling of the exposed crust and are being influenced by the contemporaneous climate. Using sedimentary compositions, it is possible to evaluate the tectonic, climatic and geographic conditions under which a sedimentary rock was deposited. Since sediments are present throughout much of the geological histories of both Earth and Mars, it is possible to trace the evolution of the surfaces of these planets. The interests of Professor McLennan lie in evaluating the evolution of planetary crusts and planetary surficial processes primarily using the chemical composition of sedimentary rocks. It is now clear that there have been active sedimentary environments of highly diverse origins operating on Mars, especially early in its history. Accordingly, through his involvement with various planetary missions to Mars, Professor McLennan evaluates the chemical and mineralogical composition of Martian surface materials in terms of sedimentary provenance, sedimentary processes, and crustal evolution.

Current research activity includes the following:

1. Mars Mission Support and Research

Professor McLennan has a long history of involvement with orbital, landed and rover missions to Mars and is currently a member of the science team for the 2011 Mars Science Laboratory mission (Curiosity rover). He was also a participating scientist for the Spirit and Opportunity rover missions (2002-2019), collaborator and participating scientist for the Mars Odyssey Gamma Ray Spectrometer team (2005-2009), science team member for the PIXL and SuperCam instruments on board the Perseverance rover mission (2014-2023) and a participating scientist on the InSight geophysical lander mission (2018-2023). On each of these missions, his role has been to support mission planning and operations and to carry out research using the most recently returned data.  He has supervised the research of a number student and post-doctoral collaborators on these missions.

2. Sedimentary Geochemistry on Mars

Chemical analyses of surface rocks (especially sedimentary rocks) and soils returned during the Viking, Pathfinder, Spirit, Opportunity, Phoenix, Curiosity and Perseverance missions, coupled with mineralogical and chemical data from a variety of orbital missions, provide important constraints on the geological history of Mars. As part of his research program, Professor McLennan carries out research to evaluate these results in terms of crustal evolution and the various “source-to-sink” sedimentary processes that may have operated at the Martian surface during its history.

3. Geochemical Evolution of Planetary Crusts

The origin, composition and evolution of planetary crusts remains a long-standing research interest of Professor McLennan, summarized in the book (with S. R. Taylor), Planetary Crusts: Their Composition, Origin, and Evolution (Cambridge), which won the Geoscience Information Society's 2010 Award for Best Reference Work. With the successful deployment of a seismometer on the InSight Lander in 2018, Professor McLennan has been working with InSight geophysical data, coupled with orbital Gamma Ray Spectroscopy from the 2001 Mars Odyssey mission and in situ geochemical analyses from the various rover missions, to refine models for the composition of the Martian crust and mantle and to place the findings into the broader context of better understanding the nature and evolution of terrestrial planets and exoplanets.


Selected Publications

(asterisk indicates student/post-doc co-author)

McLennan, S. M. and Rudnick, R. L. (2024) Stuart Ross Taylor 1925-2021. Historical Records of Australian Sci., doi:10.1071/HR24009.

McLennan, S. M. (2024) Scientific laws and myths, Ockham’s razor and multiple working hypotheses. Elements, 20, 150-151&213, doi.10.2138/gselements.20.3.150. https://www.elementsmagazine.org/wp-content/uploads/archives/e20_3/e20_3_dep_TriplePoint.pdf

Kim, D. et al. (incl. S. M. McLennan) (2023) Global crustal thickness revealed by surface waves orbiting Mars. Geophys. Res. Lett., 50, e2023GL103482. https://doi.org/10.1029/2023GL103482.

Udry, A. et al. (incl. S. McLennan) (2023) A Mars 2020 Perseverance SuperCam perspective on the igneous nature of the Máaz formation at Jezero crater and link with Séitah, Mars. J. Geophys. Res. – Planets, 128, e2022JE007440, https://doi.org/10.1029/2022JE007440.

Beyssac, O. et al. (incl. S. McLennan) (2023) Petrological traverse of the olivine cumulate Séítah formation at Jezero crater, Mars: A perspective from SuperCam onboard Perseverance. J. Geophys. Res. – Planets, 128, e2022JE007638, https://doi.org/10.1029/2022JE007638.

Simon, J. I. et al. (incl. S. M. McLennan) (2023) Samples collected from the floor of Jezero crater with the Mars 2020 Perseverance rover. J. Geophys. Res. – Planets, 128, e2022JE007474, https://doi.org/10.1029/2022JE007474.

Li, J., Beghein, C., Lognonné, P, McLennan, S. M. et al. (2023) Different Martian crustal seismic velocities across the dichotomy boundary from multi-orbiting surface waves. Geophys. Res. Lett., 50, e2022GL101243.

McLennan, S. M. (2022) Composition of planetary crusts and planetary differentiation. In: T. K. P. Gregg R. M. S. Lopes and S. A. Fagents (Eds.) Planetary Volcanism Across the Solar System. Elsevier (Amsterdam) pp. 287-331.

Li, J., Beghein, C., McLennan, S. M. et al. (2022) Constraints on the Martian crust away from the InSight landing site. Nature Comm., 13, 7950, https://doi:10.1038/s41467-022-35662-y.

Kim, D., Banerdt, W. B. et al. (incl. S. M. McLennan) (2022) Surface waves and crustal structure on Mars. Science, 378, 417-421, doi:10.1126/science.abq7157.

Wiens, R. et al. (incl. S. M. McLennan) (2022) Compositionally and density stratified igneous terrain in Jezero crater, Mars. Science Adv., 8, eabo3399, doi:10.1126/sciadv.abo3399.

Tice, M. M. et al. (incl. S. M. McLennan) (2022) Alteration history of Séítah formation rocks inferred by PIXL X-ray fluorescence, X-ray diffraction and multispectral imaging on Mars. Science Adv., 8, eabp9084, doi:10.1126/sciadv.abp9084.

Liu, Y., Tice, M. M. et al. (incl. S. M. McLennan) (2022) An olivine cumulate outcrop on the floor of Jezero crater. Science, 377, 1513-1519, doi:10.1126/science.abo2756.

Farley, K. A., Stack, K. M. et al. (incl. S. M. McLennan) (2022) Aqueously altered igneous rocks on the floor of Jezero crater, Mars. Science, 377, eabo2196, doi:10.1126/science.abo2196.

Smith* R. J., McLennan, S. M. et al. (2022) X-ray amorphous sulfur-bearing phases in sedimentary rocks of Gale crater, Mars. J. Geophys. Res. – Planets, 127, e2021JE007128. https://doi.org/10.1029/2021JE007128.

Wieczorek, M. A., Broquet, A., McLennan, S. M.  et al. (2022) InSight constraints on the global character of the Martian crust. J. Geophys. Res. – Planets, 127, e2022JE007298.

McLennan, S. M. and Rudnick, R. L. (2021) Stuart Ross Taylor (1925-2021): A tribute to his life and scientific career. Meteor. Planet. Sci., 56, 1784-1791, doi:10.1111/maps.13733.  https://onlinelibrary.wiley.com/doi/pdf/10.1111/maps.13733

Mangold, N., Gupta, S. et al. (incl. S. M. McLennan) (2021) Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 374, doi:10.1126/science.abl4051.

Knapmeyer-Endrun, B., Panning, M. P. et al. (incl. S. M. McLennan) (2021) Thickness and structure of the Martian crust from InSight seismic data. Science 373, 438-443.

Khan, A., Ceylan, S. et al. (incl. S. M. McLennan) (2021) Imaging the upper mantle structure of Mars with InSight seismic data. Science 373, 434-438.

Plesa, A.-C., Bozdag, E., Rivoldini, A., Knapmeyer, M., McLennan, S. M. et al. (2021) Seismic velocity variation in a 3D Martian mantle: Implications for the InSight measurements. J. Geophys. Res. – Planets 126, e2020JE006755.

Smith*, R. J., McLennan, S. M., Achilles, C. N., Dehouck, E., Horgan, B. H. N., Mangold, N., Rampe, E. B., Salvatore, M., Siebach, K. L. and Sun, V. (2021) X-ray amorphous components in sedimentary rocks of Gale crater, Mars: Evidence for ancient formation and long-lived aqueous activity. J. Geophys. Res. – Planets, 126, e2020JE006782.

Banaerdt, W. B., Smrekar, S. et al. (including S. McLennan) (2020) Initial results from the InSight mission on Mars. Nature Geosci., 13, 183-189.

Wang, A., Yan, Y., Jolliff, B. L., McLennan, S. M., Wang, K., Shi, E. and Farrell, W. M. (2020) Chlorine release from common chlorides by martian dust activity. J. Geophys. Res.– Planets, 125, e2019JE006283. https://doi.org/10.1029/2019JE006283.

McLennan, S. M., Grotzinger, J. P., Hurowitz, J. A. and Tosca N. J. (2019) The sedimentary cycle on early Mars. Ann. Rev. Earth Planet. Sci., 47, 91-118.  https://www.annualreviews.org/content/journals/10.1146/annurev-earth-053018-060332#

Jolliff, B. L., Mittlefehldt, D. W., Farrand, W. H., Knoll, A. H., McLennan, S. M. and Gellert, R. (2019) Mars Exploration Rover Opportunity: Water and other volatiles on ancient Mars. In: J. Filiberto and S. P. Schwenzer (Eds.) Volatiles in the Martian Crust. Elsevier (Amsterdam) pp. 285-328.

Zhao*, Y.-Y. S., McLennan, S. M., Jackson, A. W. and Karunatillake, S. (2018) Photochemical controls on chlorine and bromine geochemistry at the Martian surface. Earth Planet. Sci. Lett. 497, 102-112.

McLennan, S. M. (2018) Lanthanide rare earths. In:  W. M. White (Ed.)  Encyclopedia of Geochemistry, 2nd Ed.  Springer-Verlag (Switzerland), doi:10.1007/978-3-319-39193-9_96-1.

Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., Milliken, R. E., Stein, N., Vasavada, A. R., Blake, D. F., Dehouck, E., Eigenbrode, J. L., Fairen, A. G., Frydenvang, J., Gellert, R., Grant, J. A., Gupta, S., Herkenhoff, K. E., McLennan, S. M., Ming, D. W., Rampe, E. B., Schmidt, M. E., Siebach, K., Stack-Morgan, K., Sumner, D. Y. and Wiens, R. C. (2017) Redox stratification of an ancient lake in Gale Crater, Mars. Science, 356, eaah6849, doi:10.1126/science.aah6849.

Siebach, K. L., Baker, M. B., Grotzinger, J. P., McLennan, S. M., Gellert, R., Thompson, L. M. and Hurowitz, J. A. (2017) Sorting out compositional trends in sedimentary rocks of the Bradbury Group (Aeolus Palus), Gale Crater, Mars. J. Geophys. Res. – Planets, 122, doi:10.1002/2016JE005195.

Cino*, C. D., Dehouck, E. and McLennan, S. M. (2017) Geochemical constraints on the presence of clay minerals in the Burns Formation, Meridiani Planum, Mars. Icarus, 281, 137-150.

Dehouck*, E., McLennan, S. M., Sklute, E. C. and Dyar, M. D. (2017) Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars:  Experimental approach. J. Geophys. Res. – Planets, 122, doi:10.1002/2016JE005222.

McLennan, S. M., Anderson, R. B. et al. (2014) Elemental geochemistry of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science, 343, doi:10.1126/science.1244734.  https://www.science.org/doi/reader/10.1126/science.1244734

Grotzinger, J P., Sumner, D. Y. et al. (incl. S. M. McLennan, S. M.) (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science, 343, doi:10.1126/science.1242777.

Dehouck*, E., McLennan, S. M., Meslin, P.-Y. and Cousin, A. (2014) Constraints on abundance, composition and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars.  J. Geophys. Res. 119, 2640-2657, doi:10.1002/2014JE004716.

Zhao*, Y.-Y. S., McLennan, S. M. and Schoonen, M. A. A. (2014) Behavior of bromide, chloride and phosphate during low temperature aqueous Fe(II) oxidation processes on Mars. J. Geophys. Res.-Planets, 119, doi:10.1002/2013JE004417.

McSween Jr., H. Y. and McLennan, S. M. (2014) Mars. In: H. D. Holland and K. Turekian, eds., Treatise on Geochemistry, 2nd Ed.; Vol. 2, A. M. Davis, ed., Planets, Asteroids, Comets and The Solar System (Elsevier, Amsterdam) pp. 251-300.

Grotzinger, J. P., Hayes, A. G., Lamb, M. P. and McLennan, S. M. (2013) Sedimentary processes on Earth, Mars, Titan and Venus. In: S. J. Mackwell et al., eds., Comparative Climatology of Terrestrial Planets, pp. 439-472. Univ. Arizona Press, Tucson.

Johnson, C., McLennan, S. M., McSween, H. Y. and Summons, R. E. (2013) Smaller, better, more: Five decades of advances in geochemistry. In Bickford, M. E., ed. The Web of Geological Sciences: Advances, Impacts, and Interactions, Geol. Soc. Am. Spec Paper 500, 1-44. doi:10.1130/2013.2500(08).

McLennan, S. M. (2012) Geochemistry of sedimentary processes on Mars. In: J. P. Grotzinger and R. E. Milliken (eds.) Mars Sedimentology, SEPM Spec. Publ. 102, 119-138.

McLennan, S. M., Sephton, M. A. et al. (2012) Planning for Mars Returned Sample Science:  Final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG): A report requested by the Mars Exploration Program Analysis Group (MEPAG). Astrobiology, 12, 175-230.

Hahn*, B. C., McLennan, S. M. and Klein, E. C. (2011) Martian surface heat production and crustal heat flow from Mars Odyssey gamma-ray spectrometry. Geophys. Res. Lett. 38, L14203, doi:10.1029/2011GL047345.

Karunatillake*, S., McLennan, S. and Herkenhoff, K. (2010) Regional and grain size influences on the geochemistry of soil at Gusev Crater, Mars. J. Geophys. Res., 115, E00F04, doi:10.1029/2010JE003637.

King, P. L. and McLennan, S. M. (2010) Sulfur on Mars. Elements, 6, 107-112.

Taylor, S. R. and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin, and Evolution. Cambridge University Press (Cambridge) 378pp.

Tosca, N. J., Knoll, A. H. and McLennan, S. M. (2008) Water activity and the challenge for life on early Mars. Science, 320, 1204-1207.

McLennan, S. M. and Grotzinger, J. P. (2008) The sedimentary rock cycle of Mars. In: J. F. Bell III (ed.) The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge Univ. Press (Cambridge), pp. 541-577.

Hurowitz*, J. A. and McLennan, S. M. (2007) A ~3.5 Ga record of water-limited, acidic conditions on Mars. Earth Planet. Sci. Lett., 260, 432-443.

Tosca*, N. J. and McLennan, S. M. (2006) Chemical divides and evaporite assemblages on Mars. Earth Planet. Sci. Lett. 241, 21-31.

McLennan, S. M., Bell III, J. F. et al. (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95-121.

Tosca*, N. J., McLennan, S. M. et al. (2005) Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 240, 122-148.

Hurowitz*, J. A., McLennan, S. M., Tosca, N. J., Arvidson, R. E., Michalski, J. R., Ming, D. W., Schöder, C. and Squyres, S. W. (2005) In-situ and experimental evidence for acidic weathering on Mars. J. Geophys. Res. 111, E02S19, doi:10.1029/2005JE002515.

Tosca*, N. J., McLennan, S. M., Lindsley, D. H. and Schoonen, M. A. A. (2004) Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited. J. Geophys. Res., 109, E05003, doi:10.1029/2003JE002218.

Squyres, S. W., Grotzinger, J. P. et al. (incl. McLennan, S. M.) (2004) In-situ evidence for an ancient aqueous environment on Mars. Science, 306, 1709-1714.

McLennan, S. M. (2003) Sedimentary silica on Mars. Geology, 31, 315-318.

McLennan, S. M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust.  Geochem. Geophys. Geosys. 2, 2000GC000109. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000GC000109

McLennan, S. M. (2001) Crustal heat production and the thermal evolution of Mars. Geophys. Res. Lett., 28, 4019-4022.

McLennan, S. M., Bock*, B., Compston, W., Hemming, S. R. and McDaniel*, D. K. (2001) Detrital zircon geochronology of Taconian and Acadian foreland sedimentary rocks in New England. J. Sed. Res., 71, 305-317.

McLennan, S. M. (2000) Chemical composition of Martian soil and rock: Complex mixing and sedimentary transport. Geophys. Res. Lett., 27, 1335-1338.

Taylor, S. R. and McLennan, S. M. (1995) The geochemical evolution of the continental crust. Rev. Geophys. , 33, 241-265. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/95RG00262

McLennan, S. M., Hemming*, S., McDaniel*, D. K. and Hanson, G. N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: M. J. Johnsson and A. Basu (Eds.) Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Amer. Spec. Paper 284, 21-40.

McLennan, S. M. (1993) Weathering and global denudation.  J. Geol. 101, 295-303. https://doi.org/10.1086/648222

McLennan, S.M., Taylor, S.R., McCulloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd-Sr isotopic composition of deep sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54, 2015-2050.

McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev. Mineral. 21, 169-200. https://doi.org/10.1515/9781501509032-010

Taylor, S. R. and McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell (Oxford), 312pp. Available for download at:  https://commons.library.stonybrook.edu/geo-articles/12